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Reconstruction of the Constitutive Parameters
for an (2 Material in a Rectangular Waveguide

Martin Norgren and Sailing He

Abstract—The inverse problem of determining the constitutive
‘parameters of an 2 material is considered. The dispersive bi-
anisotropic {2 sample is placed in a rectangular waveguide. All
the constifutive parameters except one are reconstructed using
the reflection and transmission data for some TE,,, and TEg,
modes. The remaining one can be obtained, e.g., from reflection
of normally incident plane waves. Numerical results for the
reconstruction are presented.

I. INTRODUCTION

ECENTLY, considerable attention has been focused on

wave propagation, scattering, and guidance in complex
media in view of their potential usefulness in a variety of
applications, e.g., control of absorption, shielding, and coating.
Among these complex media, chiral media have been studied
extensively in the past few years (e.g., [1]~[4]). A new class
of complex materials, called (2 media, was introduced a few
years ago [5], [6]. The properties of an {2 medium can be
envisaged as arising from a distribution of metal half-loop with
two extended arms. Some scattering properties and possible
applications have been studied in [7]-[9] for an {2 material in
which all the loops have their extended arms parallel to each
other and in which all the normals to the planes of the loops
are also parallel (cf. Fig. 1).

In the present paper we consider a homogeneous block of
such an (! material with their extended arms and normals to
the planes of the loops pointing in the y and z directions,
respectively, in a metallic rectangular waveguide along the z
direction (see Fig. 1). The inner dimensions of the waveguide
are 0 < £ < 4,0 < y < b, and the §2 sample occupies the
region 0 < z < L. We describe in the present paper how to
reconstruct the constitutive parameters of the €} material from
measured reflection and transmission data for some modes at
z = 0 and z = L. Determination of the constitutive parameters
in waveguides has been studied for some dielectric media, see,
e.g., [10], [11]. Considerable work has been done on determin-
ing the constitutive parameters of bi-isotropic chiral media
using free-space measurements, see, ¢.g., [12], [13]. There
are many advantages to the use of waveguide measurements
in determining the parameters compared to free-space mea-
surements, e.g., there is no problem of secondary diffraction
effects. The constitutive relations for the {2 material are

D=GE+¢h (1)
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Fig. 1. An € sample in a rectangular waveguide.

B=jf+(E ?)

where the parameter tensors have the following forms in the
xyz coordinate system
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and where gy and ugp are the permittivity and permeability in
vacuum, respectively, and {2 is the dimensionless parameter
measuring the degree of cross-coupling between the electric
and magnetic fields. Thus one sees that such an {2 material
is bi-anisotropic. All the constitutive parameters for the Q
material are, in general, dispersive. The inverse problem is
to determine the unknown dispersive parameters €;, p; (¢ =
1, 2, 3), and ) from reflection and transmission data of some
modes.

II. PROBLEM FORMULATION

Maxwell’s equations in the xyz coordinate system with
harmonic time dependence exp (jwt) are

V x B = —jw(all + (B
V x H = jw(zE + ¢H)

5
Q)

where the parameter tensors are given by (3) and (4), and
E = (Ey, Ey, Es)", H = (Hy, Hy, Hy)".

If the electromagnetic fields E and H for a given mode have
a z-dependence of exp (—yz), then from Maxwell’s equations
(5) and (6) one obtains the following equations:

Oz Fy — 8y-El = _ijBHB )
O Hy — 8yfIl = jwesls 3
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From (9) one can express the transversal fields in terms of the
longitudinal fields as follows:

-1
b= ———[y0,F j 9, H: 10
1 72+w2€1ﬂ2['}’ o Elg + jwpz0y Hs] (10)
1
FEy = —
27 2+ w¥(eapn — oo
X [(v + wy/Eomo)0y B3 — jwui 8, Hs]  (11)
-1
Hy = —
LT w0 (eap — 0p0f2?)
X [(v — wy/eope)0, Hz — jwe20y B3] (12)
-1
Hy= — ——[~v0,H jwe10, F3). 13
2= e [v0, H3 + jwe10, Es3) (13)

Substituting (10)—(13) into (7) and (8), one obtains the
following coupled equations for the longitudinal fields:

82 62 + 83) Eg
(o7
w/Eg o2
- <v h\/ e )agygg 14)
21 12
H1 49 2
e —- 0% —|-} dy + us | Hs
51
—%)aiyEg (15)
hi,

where

hi —’V +w’ern

h3 = 42 + w?(eap1 — eopo?). (16)

The purpose of the present paper is to determine the
parameters of the (2 material by measuring the reflection and
transmission data at z = 0, L for certain modes. The analysis
will become simpler if one uses some simple modes instead
of hybrid modes. From (14) and (15) one sees that if © # 0,
decoupling of E3 and Hj occurs only when

9, =0 a7

or

8y =0. (18)
Thus the decoupling occurs only for TE,,,,, modes with m = 0
or n = 0 (note that neither m nor n can be zero for TM modes
in a rectangular waveguide, cf. [14]). In the next section, we
calculate the reflection and transmission for these decoupled
modes, which will be used in Section IV as the input to
reconstruct the constitutive parameters of the {2 material.
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III. REFLECTION AND TRANSMISSION
FOR TE, o, AND TE(, MODES

When 8, = 0, one has the following decoupled equation
and boundary condition for TE,o modes (cf. (15) and (11))

(32

E2|$:0,a = 0, i.e.,

" 222 + w?(eop1 — eopof?’ )])H3 =0 19
(81H3)|J;:0,a =0. (20)
Thus one has the following set of solutions:

HY" = Cp, cos (?) exp (—Ym2)

ET L IYW ¢ sin (mmr) exp (—Ym?2)
mm a
— W JETnQ .
H = apta(ym Sl )C’m sin (w) exp (—Ym#z)
My a
El'=Hy"=E3"=0
where

. m\ 2
Ym =] \/WQ(EQIH — eotof2?) — ﬂ(——) @2n

us N a

and where we take the square root in (21) with nonnegative
real part. Thus for frequencies larger than the cutoff frequency,
the above set of solutions represent the ones that propagate in
+z direction (note that the time dependence is exp (jwt)).
Similarly, one can obtain another set of solutions to (19) and
(20) which propagate in —z direction. Putting these two sets
of solution together, one can write the total tangential fields
for TE,,0 modes inside the waveguide as follows:

1
Em = [E,';exp (“PYmZ) + E;qexp (71nz)]

« sin (mmc)ey (22)
73
| 1 + -
H,, = o[~ B exp(~m?) + Epexp (1m2)]
X sin (mm:)ez (23)

(ez, ey are unit vectors in the z and y directions, respectively),

where the constant amplitudes EL are to be determined by the

boundary conditions at z = 0, L, and
Jwp

Y — Wr/EotipSt

Assume that the waveguide is excited from the left region

z < 0. Then the tangential fields for the TE,g-modes, in the
vacuum regions, have the forms

J_
m = Ly, [exp (=Y0m2) + R eXp (Yom2)] sin (222 ) e, }

- ZEUm [ eXP( 'YOmZ) + R, exp (’YOmZ)] sin (mfrz)em
2<0 (25)

)

Zy = (24)
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and R,,, T,, are the reflection and transmission coefficients,
respectively, for the TE,p-modes. E¢, is the amplitude of the
incident field. From (22), (23), (25), (26), and the continuity
of the tangential fields at z = 0, L, one obtains

Z

(L+ Rpn) cosh L~ Z"(1 = Run) sinhyn L = T (28)
0m
. Zim T
(14 Rp)sinhvy, L — =2-(1 — Ry)coshyp L = —="T,.
ZOm Z()m
(29)

From the above two equations, one can uniquely determine
the reflection coefficient R,, and the transmission coefficient
T, in a direct problem if the material parameters are known.
One obtains

(&)’

) - 1] sinh v, L

R, = 30)
[(Zo ) + 1] sinh L + 2( =) cosh v, L
o Zm.
T, = (Z) . (3D
[(Z—m) + 1] sinh ¥, L + 2( ) cosh ¥, L

Similarly, when J, = 0, one can write the total tangential
fields for TEq,-modes inside the waveguide as follows:

= [Ej{exp (=¥nz) + E, exp (y,2)]sin (m)em (32)

b
T, = o Bfew (1) — Brexp (alsin (72 )e,
(33)
where
o= j\/ v — 22 (M) G4
s\ b
w

Z, =2 7:2. (35)

The reflection coefficient R,, and the transmission coefficient
T,, for the TEg, modes can be defined analogously. The
continuity of the tangential fields at z = 0 and z = L will
then give

7
(1+ Ry)coshy,L — Z—n(l - R,)sinhv, L =T, (36
on
(1 + R,)sinhvy,L — == (1 - R,)coshy, L = ——T1,
Zon ZOn
(37

where Yo, = jy/w2eopo — (% ) and Zgn
from the above two equations one can obtain similar ex-
pressions for the reflection and transmission coefficients for
TEg,-modes as (30) and (31) (replace the subscript m with
n).

IV. DETERMINATION OF THE MATERIAL PARAMETERS

In the inverse problem, it is assumed that one knows
the reflection and transmission, and wants to determine the
constitutive parameters of the {} material inside the waveguide.
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A. Determination of the Propagation Constant and Impedance

From (28) and (29) one obtains the following equation by
eliminating Z,,/Zom

T2 —R%2 +1
coshy L= -m—Tmt L L (38
2T,
where a,, and b, are real and measurable.
Let
Ym = Qm + JBm (39

where 3, > 0 (cf. the definition (21)), «,,, > 0 (since we

only consider passive media). From (38) one obtains

cosh a,, L cos B, L (40)

(41

:am

sinh o, L sin B L = b,y

Eliminating the trigonometric functions in the above two
equations, one obtains

sinh? ap, I — (a2, + b2, — 1) sinh? a,,, L — b2, = 0
Since sinh @, L > 0 (note that «,, > 0), from the above

equation one obtains

1
sinha,, L = \/i[a?" + b2, — 1+ +/(a2, + b2, — 1)2 + 4b2)]

which gives o, uniquely

1
sinh™? \/-2- [agn 52 — 14/ + 62 — 12+ 4b$n].
(42)
After o, has been determined, one has (cf. (40) and (41))

Am bm

~ cosha,, L sin i L = sinh a,,, L “3)

cos By, L

which gives

where Bm, 0< Bm < 2w /L, is uniquely determined from (43).
However, the integer p should be determined from some other
information. If the length L of the © sample is sufficiently
small, then p = 0. Note that the propagation factor exp (—+vL)
does not change when the length L changes by a multiple of
the wavelength. Much work has been done to eliminate this
phase ambiguity in inverse problems by, e.g., making time-
domain measurements [12], or making measurements at two
or more frequencies [15], or using samples of different sizes
[16]. Thus we will not address this aspect in the present paper
(in the numerical reconstruction we take the correct value of
the integer p from the direct calculation).

After the propagation constant +,, has been determined
from (42) and (43) for the TE,,y mode, one can obtain the
impedance Z,, for the mode (cf. (28))

1+ R,,)coshy,, L — Ty,

(
Zm = m P
Zo (1~ R,,)sinh~,, L

(45)
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Fig 2. The reflection and transmission coefficients for an £ sample (with its parameters shown in Fig. 3) in the rectangular waveguide. The size of
the  sample 1s @ = b = L = 0.1 m. The thin solid curves are for the clean data, and the thick solid curves are for the noisy data. (a) TEy

mode. (b) TEx mode. (c¢) TEg mode. (d) TEp mode.

In a completely analogous way, one can determine the
propagation constant ,, and the impedance Z,, for the TEg,-
mode.

B. Determination of the Constitutive Parameters

After the propagation constant and the impedance have been
determined, one can determine the constitutive parameters of
the €2 material as follows:

First we excite the waveguide with the TEy and TEonx
(N > 2) modes at a frequency w. From (35) one obtains

2
gy = IZn o1, (46)
Jw
Furthermore, from (34) one has
2 _ N242
N 4 (47)

o (N - 1)

=n(3) 7
M3 H2 ) "Y]? T w251/112.
Then we excite the waveguide with the TEyq and TE;p

(M > 2) modes at the same frequency w. From (21) one
obtains

(43)

a’ ('Yzzu - 1)

= py e 49
p1 = p3 (M 1) (49)
Then from (24) one has
Ym = jwits/Zm
Q= m=1. 50
Wy/Eo 0 0
Finally, from (21) one obtains
2
Q2 E(mE) -4
ey = 2H0 +”’°‘( “2) . m=1 (5D
M1 w1

Since €3 does not affect the reflection or transmission for
any TE,,o- or TEg,-mode, one can not determine €3 by only
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Reconstructed parameter

1319

I | {

3.0 3.2 3.4 3,6 3.8 4.0 4.2 4.4
Frequency f (GHz)
3.0 ol < byt ‘u‘ - AdSad Al I S—
. Re
[
g 2.5 - £/&,
E 2.0
o
o 1.5
2
3 1.0
2
s 0.5
3
T 0.0 Im
,._‘7." Ay Le v ‘l A i V‘AL L e -r L A‘ lvy
| ] ] I 1 I
3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4
Frequency f (GHz)
A €/ & ! '4|.| .
) Ry = v Wi “l'A.
qE) 5F Re ' $|”.
o v
8 fu
© 0o » L
2 A <
Q
2
2 .5
[«
(5]
[
&
-10_
1 | ] ] I 1
3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4

Frequency f (GHz)

Fig. 3. The reconstruction of the dispersive parameters using the noisy reflection and transmission data shown in Fig. 2.

measuring the reflection and transmission for TE,g and TEgy,-
modes. One may hope to determine €3 by repositioning the
) sample in the waveguide, and measuring the corresponding
reflection and/or transmission coefficients for certain decou-
pled mode. However, one can show that if the {2 sample
is repositioned in the waveguide with the third principal
axis of the bi-anisotropic 2 sample in the z(y) direction,
then the only possible decoupled modes are TE,yp (TEon)-
modes. Furthermore, from the analysis of these modes one can
easily see that the reflection or transmission for any possible
decoupled mode in any case does not depend on e3. Thus the
remaining parameter €3 should be determined from some other
measurements, e.g., free-space measurement of the reflection

for a normally incident plane wave (propagating in x direction)
with electric field polarized in z direction. The corresponding
reflection coefficient is [9]

. 7
r=[1—exp (g47ra/,/€3ﬂ2)]1—_;~3
where a is the thickness of the sample and

P Vv eo/to — +/ €3/ U2
Veo/ro + €3/ pe
Note that in principle it may be possible to determine all the

constitutive parameters by free-space measurement of the re-
flection and transmission for plane waves obliquely incident on
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Fig. 3. (Continued)

an 2 slab with several different incident angles. However, it is
difficult to measure the reflection and transmission accurately
in free space due to secondary diffraction effects. Furthermore,
the expressions for the reflection and transmission coefficients
for an Q slab are very complicated for the oblique incidence
case [9], and are not attractive for use to determine the
constitutive parameters explicitly. Thus reconstruction from
waveguide measurements should be used when possible.

V. NUMERICAL RESULTS

Based on the results reported in [17] and [18], we choose the
frequency dependence of the parameter €2 as shown in Fig. 3.
€2 and p; will consequently become frequency-dependent

3.

6

3.8
Frequency f (GHz)

®)

and larger in amplitudes (compared to the other diagonal
elements of the permittivity or permeability tensor) due to
the cross-coupling between the electric and magnetic fields,
if the host material is isotropic and frequency-independent (in
the frequency range we consider here) before the insertion of
the (2-shaped metal loops. Thus we choose the constitutive
parameters of the ) sample as shown in Fig. 3 for the
numerical test. The size of the () sample is a = b= L = 0.1
m. In the vacuum region z < 0, the cutoff frequency is f.
m/(2a./eopo) (or n/(2b\/Egpg)) for TE,o (or TEq, mode).
We choose the frequency range between the cutoff frequencies
for the second and third modes, so that only the first and
second modes can be excited in this frequency range (in this
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case the frequency range is 3 ~ 4.5 GHz). The corresponding
reflection and transmission coefficients for TE,, (m = 1,2)
and TEq, (n = 1,2) modes are calculated using (30) and (31),
and are shown by the thin solid curves in Fig. 2 (note that
these reflection and transmission coefficients are independent
of the parameter ¢3). To test the stability of the reconstruction
scheme, we have added 3% (with respect to the absolute value
of the reflection or transmission coefficient) of random noises
to both the real and imaginary parts of the reflection and
transmission coefficients. The noisy data are shown by the
thick solid curves in Fig. 2. Using the reconstruction scheme
described in Section 1V, the reconstructed parameters and the
true parameters essentially coincide on the scale of Fig. 3 if
the clean data of the reflection and transmission are used.
. The reconstruction of the constitutive parameters using the
noisy reflection and transmission data is shown by the dashed
curves in Fig. 3. Since we choose the dispersive parameters
to be much lossier in the frequency range 4.0 ~ 4.5 GHz,
the transmission coefficients become very small in the range
4.0 ~ 4.5 GHz (see Fig. 2(a) and (b)). As a consequence,
the reconstruction of the parameters (shown by the dashed
curves in Fig. 3) becomes more sensitive to the noise ir. the
range 4.0 ~ 4.5 GHz (this is because the determination of the
propagation constant becomes more sensitive to the random
noise if the transmission coefficients become very small, cf.

(38)).

VI. CONCLUSION

In the present paper all the dispersive parameters except €3
of a bi-anisotropic {2 material have been reconstructed using
the reflection and transmission data in a rectangular waveguide
for some TE,n and TEg,-modes (with two different values
of m and two different values of n at each frequency).
The analytical expressions for the reflection and transmission
coefficients for these modes have been given. Numerical
results for the reconstruction have been presented, and the
reconstruction scheme has been tested with noisy data.
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